Design of Interpolating Biorthogonal Multiwavelet Systems with Compact Support

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating multiwavelet bases and the sampling theorem

This paper considers the classical sampling theorem in multiresolution spaces with scaling functions as interpolants. As discussed by Xia and Zhang, for an orthogonal scaling function to support such a sampling theorem, the scaling function must be cardinal (interpolating). They also showed that the only orthogonal scaling function that is both cardinal and of compact support is the Haar functi...

متن کامل

Recursive biorthogonal interpolating wavelets and signal-adapted interpolating filter banks

In this paper, by combining the ideas of the recursive wavelets with second-generation wavelets, a family of recursive biorthogonal interpolating wavelets (RBIWs) is developed. RBIW’s have simple shape parameter vectors on each level, which allows a multichannel decomposition algorithm and provides a flexible structure for designing signal-adapted interpolating filter banks. In the single-level...

متن کامل

Smooth Multiwavelet Duals of Alpert Bases by Moment-Interpolating Refinement

Using refinement subdivision techniques, we construct smooth multiwavelet bases for L2(R) and L2([0,1]) which are in an appropriate sense dual to Alpert orthonormal multiwavelets. Our new multiwavelets allow one to easily give smooth reconstructions of a function purely from knowledge of its local moments. At the heart of our construction is the concept of moment-interpolating (MI) refinement s...

متن کامل

Interpolatory biorthogonal multiwavelet transforms based on Hermite splines

We present new multiwavelet transforms for discrete signals. The transforms are implemented in two phases: 1. Pre (post)processing which transform the scalar signal into the vector one (and back). 2.Wavelet transforms of the vector signal. Both phases are performed in a lifting manner. We use the cubic interpolatory Hermite splines as a predicting aggregate in the vector wavelet transform. We p...

متن کامل

Stable Lifting Construction of Non-Uniform Biorthogonal Spline Wavelets with Compact Support

In this paper we use the lifting scheme to construct biorthogonal spline wavelet bases on regularly refined non-uniform grids. The wavelets have at least one vanishing moment and on each resolution level they form an L2 Riesz basis. Furthermore we are interested in determining the exact range of Sobolev exponents for which the complete multilevel system forms a Riesz basis. Hereto we need to ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2001

ISSN: 1063-5203

DOI: 10.1006/acha.2001.0361